Discover our data management knowledge
Here you will find our current data management publications from CDQ and the Competence Center Corporate Data Quality (CC CDQ). Please use the buttons below to filter the documents by category, type, and year.
CC CDQ Research Briefing - Data Products Lifecycle
Prof. Dr. Christine Legner, Tobias Pentek, M Redwan HasanHow can organizations manage data products end-to-end? Who are the key roles in this process? As data products reshape enterprise data management, businesses must adopt a consumer-driven approach to enhance scalability, reusability, and impact. …Deduplication Before S4HANA Migration
Oliver RehThe shocking truth is that countless companies are pouring in millions of Euros and often dedicating as much as 5 years to S/4HANA migrations. But here‘s the catch: if your data isn‘t set for the transformation, you might as well be burning your …CC CDQ Research Briefing - Federated Data Governance
Dr. Hippolyte Lefebvre, Prof. Dr. Christine Legner, Dr. Tobias PentekThis briefing explores data management challenges in large organizations and why traditional central governance models struggle with data at scale. It introduces a federated data governance model, emphasizing a hub-hub-spoke framework for …CC CDQ Research Briefing - Modern Data Governance
Dr. Hippolyte Lefebvre, Prof. Dr. Christine Legner, Dr. Tobias PentekThe CC CDQ Research Briefing emphasizes the growing importance of data governance and offers a comprehensive definition while elaborating on the dual responsibilities associated with data governance. …CC CDQ Research Briefing - Data capabilities for sustainability
Dr. Elizabeth A. Teracino, Prof. Dr. Christine Legner, Dr. Tobias PentekAs sustainability impacts society and the economy, companies are facing three major developments: 1. emerging sustainability regulations and standards leading to new data requirements for ESG and non-financial reporting; 2. new risk and compliance …Value of Automation
David GiesingerDiscover financial benefits of automation in Master Data Management, so you can unlock yours! Bring six-digit savings and drastic time reduction for your teams by smartly automating your business partner data management! See real-life examples of …CC CDQ Data Product Canvas
M Redwan Hasan, Prof. Dr. Christine LegnerThe CC CDQ Data Product Canvas is designed to get a more comprehensive product perspective on data. This visual inquiry tool supports cross-functional teams in understanding, designing, and analyzing Data Products. The canvas is the first step …CC CDQ Research Briefing Data Products
M Redwan Hasan, Prof. Dr. Christine LegnerViewing information or data as a product has become a popular way to address the increasing demand for data and analytics, but most importantly it introduces a paradigm shift – from data provision to data consumption and value generation. …CC CDQ Research Briefing Data Literacy
Hippolyte Lefebvre, Prof. Dr. Christine LegnerTo make the most of data in business, all employees must have the ability to use data in their day-to-day work. To achieve this, companies need to invest in programs that enhance the data literacy of their employees. It's important to note that the …CC CDQ Research Briefing Data Democratization
Hippolyte Lefebvre, Prof. Dr. Christine Legner, Markus EurichThe concept of democratizing data is often confused with universal access to data, whereas it entails instead an organizational-wide cultural shift and teaching this wider range of employees with data from their own functional position or …Vertrauenswürdige Geschäftspartnerdaten durch Data Sharing [GERMAN]
Prof. Dr. Christine Legner, Dr. Kai Hüner, Dr. Simon Schlosser, Dr. Dimitrios GizanisKunden- und Lieferantendaten, auch als Geschäftspartnerdaten bezeichnet, bilden die Grundlage digitaler Geschäftsprozesse und sind Voraussetzung für die Erfüllung regulatorischer Anforderungen. Allerdings kämpfen die meisten Unternehmen mit …CDQ Data Sharing
Tobias PentekEvery single business process and every decision made is based on data. Obviously, companies need reliable data, but data changes quickly and relentlessly. …Business Impacts of Good Master Data
David GiesingerImpacts of high-quality business partner data and how you can benefit right away. Discover a world where data fuels your operations, empowers decisionmakers, and enhances your employees‘ and customers‘ experience. With this ePaper you …Business Impacts of Bad Master Data
David GiesingerAs businesses become increasingly data-driven, it's more important than ever to ensure the accuracy of your partner records. Unfortunately, manual efforts to fix errors often lead to even more data inaccuracies, which can have disastrous consequences …CC CDQ Briefing External Data
Prof. Dr. Christine Legner, Pavel Krasikov, Markus EurichExternal data is an underexploited resource Open or freely available data from the Web or sourced from data providers is growing at a rapid pace. Despite the availability of external data, Competence Center Corporate Data Quality (CC CDQ) research …In 4 steps to more value from data
Dr. Tobias Pentek, Prof. Dr. Christine Legner, Martin FadlerLike any journey, the path to more value from data begins with first steps. In this guide, we first explain the motivation for and challenges on this journey. With the help of the data value chain, we present a framework. Based on this, we recommend …In 4 Schritten zu mehr Wert aus Daten [GERMAN]
Dr. Tobias Pentek, Prof. Dr. Christine Legner, Martin FadlerWie Sie ein unternehmensweites Verständnis für den Wert und die Potenziale von Daten erzeugen, erste Erfolge ermöglichen und die Grundlagen für eine erfolgreiche Nutzung schaffen.The Data Value Formula
Prof. Dr. Christine Legner, Martin FadlerIn their recent e-book, CDQ data experts from the Competence Center Corporate Data Quality (CC CDQ) explain how to turn data into business value using a simple model – the Data Value Formula.FAIR Enough? Enhancing the Usage of Enterprise Data with Data Catalogs
Prof. Dr. Christine Legner, Dr. Markus Eurich, Clément Labadie, Martin FadlerOur publication proposes a taxonomy of data catalog initiatives and presents 3 detailed case studies that illustrate typical approaches to data catalogs.Data Documentation for Data Catalogs: Metadata model and attributes
Prof. Dr. Christine Legner, Dr. Markus Eurich, Clément LabadieThis research paper proposes a reference model for data documentation in the enterprise context to facilitate data selection also by non-data experts.Exclusive for CC CDQ membersKonsortialforschung zur Entwicklung von Referenzmodellen für die Digitalisierung von Unternehmen - Erfahrungen aus dem Datenmanagement [GERMAN]
Prof. Dr. Christine Legner, Tobias PentekThis data management publication illustrates how consortium research facilitates knowledge transfer and the rigorous development of reference models.Framework for the Generation and Documentation of Open Data Use Cases
Prof. Dr. Christine Legner, Pavel Krasikov, Matthieu Harbich, Markus EurichThe report clarifies the definition of "open data" and develops a framework for the generation and documentation of open data use cases for the business context.Data Strategy Canvas
Prof. Dr. Christine Legner, Tobias PentekThe data strategy canvas helps you to define the key elements of your data strategy. The document is printable and created in DIN A0 format. You can use the canvas in workshops together with data managers and business experts to develop the key elements of your data strategy.Managing Data as an Asset with the Help of Artificial Intelligence
Prof. Dr. Christine Legner, Martin FadlerWhat it means for companies to manage data as an asset, and how artificial intelligence (AI) will fundamentally impact and change the way data is managed.Exclusive for CC CDQ membersUnderstanding Data Protection Regulations from a Data Management Perspective
Prof. Dr. Christine Legner, Clément LabadieThe paper advances the regulatory compliance management literature by translating legal data protection concepts for the information systems community.Open Data Use Cases Overview
Pavel KrasikovThis document shows open data use cases in the business environment. It includes seven business scenarios applicable in scopes of marketing & sales, supply chain management, business partner risk management, and finally, data management.Data Excellence Model Template
Tobias PentekThe template contains the Data Excellence Model (DXM) and a description of the corresponding goals, enablers, and results.Data Protection from a data management perspective: The case of GDPR
Prof. Dr. Christine Legner, Clément LabadieThe GDPR Capability Model provides an action-oriented view on the capabilities that need to be built in order to comply with GDPR’s complete set of requirements.PMI's Journey Towards a Data-Driven Enterprise
Prof. Dr. Christine Legner, Tobias Pentek, Martin FadlerThis work report summarizes PMI’s journey towards a data-driven enterprise, and illustrates how offensive and defensive aspects of a data strategy work hand-in-hand.Data Catalogs: Integrated platforms for matching data supply and demand
Prof. Dr. Christine Legner, Prof. Dr. Boris Otto, Tobias Korte, Markus Spiekermann, Martin FadlerThe reference model and a market study help companies in assessing Data Catalog solutions available on the market and choosing the one most suitable to meet their specific needs.Exclusive for CC CDQ membersCDQ Trend Study: Where data management is heading
Prof. Dr. Christine Legner, Tobias Pentek, Dr. Martin Ofner, Clément LabadieThe CDQ Trend Study aims at providing an understanding of the goals of data management and capturing current as well as future activities of companies.Data Excellence Model: Short Description and Basic Terminology
Prof. Dr. Christine Legner, Tobias PentekShort description and basic terminology of the research-based reference model for managing corporate data assets.Towards a Reference Model for Data Management in the Digital Economy
Prof. Dr. Boris Otto, Prof. Dr. Christine Legner, Tobias PentekTo address the changing and broader scope of data management activities in the digital economy, this research in progress paper proposes a reference model, that describes the design areas of data management.Exclusive for CC CDQ membersCorporate Data Quality: Voraussetzung erfolgreicher Geschäftsmodelle [GERMAN]
Prof. Dr. Boris Otto, Prof. Dr. Huber ÖsterleDieses Buch zeigt einen ganzheitlichen Ansatz zum qualitätsbewussten Management von Stammdaten auf und richtet sich damit sowohl an Praktiker als auch an die Wissenschaft.Master Data erfolgreich managen [GERMAN]
Prof. Dr. Boris Otto, Prof. Dr. Christine LegnerIn Zeiten digitaler Geschäftsmodelle und Industrie 4.0 steigt die Bedeutung von Stammdaten für den Geschäftserfolg. Aus den Erfahrungen von drei Unternehmen lassen sich wesentliche Erfolgsfaktoren für ein professionelles Stammdaten-Management ableiten.Assessing the Economic Value of Data Assets
Andreas ZechmannThe work report presents the conceptual design of two data management valuation methods and provides guidance for their application.EFQM Framework for Corporate Data Quality Management
EFQM, Competence Center Corporate Data QualityFramework for the assessment and analysis of remedies for missed opportunities and unexploited potentials in Corporate Data Quality Management.Corporate Data Quality: Prerequisite for Successful Business Models
Prof. Dr. Boris Otto, Prof. Dr. Huber ÖsterleA holistic approach to the management of master data in a high quality manner for both practitioners and academics.Business and Data Management Capabilities for the Digital Economy
Prof. Dr. Boris Otto, Dr. Dimitrios Gizanis, Rieke BärenfängerThe report provides data managers from all industries with useful background information and practical guidance for their journey towards the digital economy.